Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shu-Ping Wang, Zhi-Hua Gao, Li-Juan Xu and Rui-Feng Wang*

Department of Chemistry, Hebei Normal University, Shijiazhuang 050016, People's Republic of China

Correspondence e-mail:
wruifen@mail.hebtu.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.027$
$w R$ factor $=0.059$
Data-to-parameter ratio $=13.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Tetra- μ-benzoato-bis[benzoato(2,2-bipyridyl)terbium(III)]

In the title compound, $\left[\mathrm{Tb}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{6}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$, two $\mathrm{Tb}^{\text {III }}$ ions are linked by four carboxylate groups in bidentate bridging modes, forming a binuclear unit. Each $\mathrm{Tb}^{\text {III }}$ ion is eight-coordinated by one $2,2^{\prime}$-bipyridyl molecule, one bidentate carboxylate group and four bridging carboxylate groups, giving distorted square-antiprismatic geometry.

Comment

Lanthanide complexes of organic ligands, especially Eu ${ }^{\text {III }}$ or $\mathrm{Tb}^{\mathrm{III}}$ complexes, often show excellent luminescence (Guo et al., 2005; Zhang et al., 2005; Liu et al., 2004). The choice of appropriate ligands is a key step in determining the luminescent characteristics of the complexes. Aromatic carboxylic acids are strong ligands to coordinate lanthanide metals. In this work, an efficient luminescent terbium complex with benzoate and 2,2'-bipyridyl ligands, (I), has been prepared and its structure determined.

The crystal structure of the title compound contains binuclear molecules $\left[\mathrm{Tb}(\mathrm{BA})_{3}(\text { bipy })\right]_{2}$. The structure is shown in Fig. 1. In each molecule, two $\mathrm{Tb}^{\mathrm{III}}$ ions are linked by four carboxylate groups in a bidentate bridging mode. The intramolecular distance between the two $\mathrm{Tb}^{\mathrm{III}}$ ions is 4.344 (2) \AA. Each $\mathrm{Tb}^{\text {III }}$ ion resides in an eight-coordinate distorted squareantiprismatic environment (Fig. 2), with four of the coordination sites occupied by the O atoms of the bridging carboxylates, two by the O atoms of the terminal bidentate carboxylates, and the remaining positions occupied by two N atoms of a $2,2^{\prime}$-bipyridyl molecule.

The $\mathrm{Tb}-\mathrm{O}$ distances are in the range 2.286 (3)-2.465 (2) \AA, of which the $\mathrm{Tb}-\mathrm{O}$ bonds formed by the terminal bidentate

Figure 1
The molecular structure, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity.

Figure 2
The coordination polyhedron of (a) the Tb 1 ion and (b) the Tb 2 ion.
carboxylate groups are longer [average distance $=2.435(2) \AA$ A than those formed by the bridging carboxylates [average distance $=2.322(2) \AA]$. The $\mathrm{Tb}-\mathrm{N}$ distances are in the range 2.552 (3) -2.621 (3) A, The five-membered chelate ring containing two N atoms and the terbium ion is nearly coplanar with the $2,2^{\prime}$-bipyridyl molecule [dihedral angle $=2.7(1)$ or $\left.5.1(1)^{\circ}\right]$.

Experimental

Stoichiometric amounts of terbium chloride, benzoic acid and 1,10phenanthroline were dissolved separately in 95% ethanol. The pH value of the benzoic acid was adjusted to the range $6-7$ with NaOH solution. The solutions of the two ligands were mixed and the mixture was added dropwise to the ethanolic TbCl_{3} solution; a white precipitate then formed. The mixture was stirred for 4 h and then filtered. The filtrate was slowly evaporated at room temperature, and colourless crystals suitable for X-ray investigation were obtained. Analysis calculated for $\mathrm{C}_{62} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{~Tb}_{2}$: C $54.88, \mathrm{H} 3.42, \mathrm{~N} 4.13 \%$; found: C 54.12, H 3.29, N 3.89\%.

Crystal data

$\left[\mathrm{Tb}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{6}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=1356.87$
Monoclinic, $P 2_{1} / n$
$a=14.1379$ (9) \AA
$b=15.3995$ (10) \AA
$c=25.9625$ (16) \AA
$\beta=103.435$ (1) ${ }^{\circ}$
$V=5497.8(6) \AA^{3}$

Data collection

Bruker APEX-II CCD area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\min }=0.781, T_{\max }=1.000$
$($ expected range $=0.601-0.770)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.059$
$S=1.04$
9710 reflections
721 parameters
$Z=4$
$D_{x}=1.639 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=2.62 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.32 \times 0.16 \times 0.10 \mathrm{~mm}$

29568 measured reflections 9710 independent reflections 7548 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=25.0^{\circ}$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.019 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.004$
$\Delta \rho_{\text {max }}=0.44 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.47 \mathrm{e}^{-3}$

H atoms were positioned geometrically ($\mathrm{C}-\mathrm{H}=0.93 \AA$) and refined as riding on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART-NT (Bruker, 1998); cell refinement: SMART-NT; data reduction: SAINT-NT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT (Bruker, 1998); software used to prepare material for publication: SHELXTL-NT.

This work was supported by the National Natural Science Foundation of China (grant No. 50472020) and the Natural Science Foundation of Hebei Province, China (grant No. 203148).

metal-organic papers

References

Bruker (1998). SMART-NT, SAINT-NT and SHELXTL-NT (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
Guo, X. D., Zhu, G. S., Fang, Q. R., Xue, M., Tian, G., Sun, J. Y., Li, X. T. \& Qiu, S. L. (2005). Inorg. Chem. 44, 3850-3855.

Liu, W. S., Jiao, T. Q., Li, Y. Z., Liu, Q. Z., Tan, M. Y., Wang, H. \& Wang, L. F. (2004). J. Am. Chem. Soc. 126, 2280-2281.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhang, Z. H., Okamura, T., Hasegawa, Y., Kawaguchi, H., Kong, L. Y., Sun, W. Y. \& Ueyama, N. (2005). Inorg. Chem. 44, 6219-6227.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

